The asteroid belt (shown in white) is located between the orbits of Mars and Jupiter.

The asteroid belt is the region of the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets. The asteroid belt is also termed the main asteroid belt or main belt to distinguish its members from other asteroids in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids, Ceres, Vesta, Pallas, and Hygiea. These have mean diameters of more than 400 km, while Ceres, the asteroid belt's only dwarf planet, is about 950 km in diameter.[1][2][3][4] The remaining bodies range down to the size of a dust particle. The asteroid material is so thinly distributed that numerous unmanned spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids do occur, and these can form an asteroid family whose members have similar orbital characteristics and compositions. It was once thought that collisions of asteroids produce a fine dust that forms a major component of the zodiacal light. However, Nesvorny and Jenniskens (2010 Astrophysical Journal) attributed 85 percent of the Zodiacal Light dust to fragmentations of Jupiter-family comets, rather than from comets and collisions between asteroids in the asteroid belt. Individual asteroids within the asteroid belt are categorized by their spectra, with most falling into three basic groups: carbonaceous (C-type), silicate (S-type), and metal-rich (M-type).

The asteroid belt formed from the primordial solar nebula as a group of planetesimals, the smaller precursors of the planets, which in turn formed protoplanets. Between Mars and Jupiter, however, gravitational perturbations from the giant planet imbued the protoplanets with too much orbital energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals and most of the protoplanets shattered. As a result, most of the asteroid belt's mass has been lost since the formation of the Solar System. Some fragments can eventually find their way into the inner Solar System, leading to meteorite impacts with the inner planets. Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits.

Classes of small Solar System bodies in other regions include the centaurs, Kuiper belt and scattered disk objects, and Oort cloud comets.

History of observation

Giuseppe Piazzi, discoverer of Ceres, known as a planet for many years, then as asteroid number 1, and eventually, a dwarf planet

In an anonymous footnote to his 1766 translation of Charles Bonnet's Contemplation de la Nature,[5] the astronomer Johann Daniel Titius of Wittenberg[6][7] noted an apparent pattern in the layout of the planets. If one began a numerical sequence at 0, then included 3, 6, 12, 24, 48, etc., doubling each time, and added four to each number and divided by 10, this produced a remarkably close approximation to the radii of the orbits of the known planets as measured in astronomical units. This pattern, now known as the Titius–Bode law, predicted the semi-major axes of the six planets of the time (Mercury, Venus, Earth, Mars, Jupiter and Saturn) provided one allowed for a "gap" between the orbits of Mars and Jupiter. In his footnote Titius declared, "But should the Lord Architect have left that space empty? Not at all."[6] In 1768, the astronomer Johann Elert Bode made note of Titius's relationship in his Anleitung zur Kenntniss des gestirnten Himmels (English: Instruction for the Knowledge of the Starry Heavens) but did not credit Titius until later editions. It became known as "Bode's law".[7] When William Herschel discovered Uranus in 1781, the planet's orbit matched the law almost perfectly, leading astronomers to conclude that there had to be a planet between the orbits of Mars and Jupiter.

In 1800 the astronomer Baron Franz Xaver von Zach recruited 24 of his fellows into a club, the Vereinigte Astronomische Gesellschaft ("United Astronomical Society") which he informally dubbed the "Lilienthal Society"[8] for its meetings in Lilienthal, a small city near Bremen. Determined to bring the Solar System to order, the group became known as the "Himmelspolizei", or Celestial Police. Notable members included Herschel, the British Astronomer Royal Nevil Maskelyne, Charles Messier, and Heinrich Olbers.[9] The Society assigned to each astronomer a 15° region of the zodiac to search for the missing planet.[10]

Only a few months later, a non-member of the Celestial Police confirmed their expectations. On January 1, 1801, Giuseppe Piazzi, Chair of Astronomy at the University of Palermo, Sicily, found a tiny moving object in an orbit with exactly the radius predicted by the Titius–Bode law. He dubbed it Ceres, after the Roman goddess of the harvest and patron of Sicily. Piazzi initially believed it a comet, but its lack of a coma suggested it was a planet.[9] Fifteen months later, Heinrich Wilhelm Olbers discovered a second object in the same region, Pallas. Unlike the other known planets, the objects remained points of light even under the highest telescope magnifications, rather than resolving into discs. Apart from their rapid movement, they appeared indistinguishable from stars. Accordingly, in 1802 William Herschel suggested they be placed into a separate category, named asteroids, after the Greek asteroeides, meaning "star-like".[11][12] Upon completing a series of observations of Ceres and Pallas, he concluded,[13]

Neither the appellation of planets, nor that of comets, can with any propriety of language be given to these two stars ... They resemble small stars so much as hardly to be distinguished from them. From this, their asteroidal appearance, if I take my name, and call them Asteroids; reserving for myself however the liberty of changing that name, if another, more expressive of their nature, should occur.

Despite Herschel's coinage, for several decades it remained common practice to refer to these objects as planets.[5] By 1807, further investigation revealed two new objects in the region: 3 Juno and 4 Vesta.[14] The burning of Lilienthal in the Napoleonic wars brought this first period of discovery to a close,[14] and only in 1845 did astronomers detect another object (5 Astraea). Shortly thereafter new objects were found at an accelerating rate, and counting them among the planets became increasingly cumbersome. Eventually, they were dropped from the planet list as first suggested by Alexander von Humboldt in the early 1850s, and William Herschel's choice of nomenclature, "asteroids", gradually came into common use.[5]

The discovery of Neptune in 1846 led to the discrediting of the Titius–Bode law in the eyes of scientists, as its orbit was nowhere near the predicted position. To date, there is no scientific explanation for the law, and astronomers' consensus regards it as a coincidence.[15]

The expression "asteroid belt" came into use in the very early 1850s, although it is hard to pinpoint who coined the term. The first English use seems to be in the 1850 translation (by E. C. Otté) of Alexander von Humboldt's Cosmos:[16] "[...] and the regular appearance, about the 13th of November and the 11th of August, of shooting stars, which probably form part of a belt of asteroids intersecting the Earth's orbit and moving with planetary velocity". Other early appearances occur in Robert James Mann's A Guide to the Knowledge of the Heavens,[17] "The orbits of the asteroids are placed in a wide belt of space, extending between the extremes of [...]". The American astronomer Benjamin Peirce seems to have adopted that terminology and to have been one of its promoters.[18] One hundred asteroids had been located by mid-1868, and in 1891 the introduction of astrophotography by Max Wolf accelerated the rate of discovery still further.[19] A total of 1,000 asteroids had been found by 1921,[20] 10,000 by 1981,[21] and 100,000 by 2000.[22] Modern asteroid survey systems now use automated means to locate new minor planets in ever-increasing quantities.


The asteroid belt showing the orbital inclinations versus distances from the Sun, with asteroids in the core region of the asteroid belt in red and other asteroids in blue


In 1802, shortly after discovering Pallas, Heinrich Olbers suggested to William Herschel that Ceres and Pallas were fragments of a much larger planet that once occupied the Mars–Jupiter region, this planet having suffered an internal explosion or a cometary impact many million years before.[23] Over time, however, this hypothesis has fallen from favor. The large amount of energy that would have been required to destroy a planet, combined with the belt's low combined mass, which is only about 4% of the mass of the Earth's Moon,[1] do not support the hypothesis. Further, the significant chemical differences between the asteroids are difficult to explain if they come from the same planet.[24] Today, most scientists accept that, rather than fragmenting from a progenitor planet, the asteroids never formed a planet at all.

In general in the Solar System, planetary formation is thought to have occurred via a process comparable to the long-standing nebular hypothesis: a cloud of interstellar dust and gas collapsed under the influence of gravity to form a rotating disk of material that then further condensed to form the Sun and planets.[25] During the first few million years of the Solar System's history, an accretion process of sticky collisions caused the clumping of small particles, which gradually increased in size. Once the clumps reached sufficient mass, they could draw in other bodies through gravitational attraction and become planetesimals. This gravitational accretion led to the formation of the rocky planets and the gas giants.

Planetesimals within the region which would become the asteroid belt were too strongly perturbed by Jupiter's gravity to form a planet. Instead they continued to orbit the Sun as before, while occasionally colliding.[26] In regions where the average velocity of the collisions was too high, the shattering of planetesimals tended to dominate over accretion,[27] preventing the formation of planet-sized bodies. Orbital resonances occurred where the orbital period of an object in the belt formed an integer fraction of the orbital period of Jupiter, perturbing the object into a different orbit; the region lying between the orbits of Mars and Jupiter contains many such orbital resonances. As Jupiter migrated inward following its formation, these resonances would have swept across the asteroid belt, dynamically exciting the region's population and increasing their velocities relative to each other.[28]

During the early history of the Solar System, the asteroids melted to some degree, allowing elements within them to be partially or completely differentiated by mass. Some of the progenitor bodies may even have undergone periods of explosive volcanism and formed magma oceans. However, because of the relatively small size of the bodies, the period of melting was necessarily brief (compared to the much larger planets), and had generally ended about 4.5 billion years ago, in the first tens of millions of years of formation.[29] In August 2007, a study of zircon crystals in an Antarctic meteorite believed to have originated from 4 Vesta suggested that it, and by extension the rest of the asteroid belt, had formed rather quickly, within ten million years of the Solar System's origin.[30]


The asteroids are not samples of the primordial Solar System. They have undergone considerable evolution since their formation, including internal heating (in the first few tens of millions of years), surface melting from impacts, space weathering from radiation, and bombardment by micrometeorites.[31] While some scientists refer to the asteroids as residual planetesimals,[32] other scientists consider them distinct.[33]

The current asteroid belt is believed to contain only a small fraction of the mass of the primordial belt. Computer simulations suggest that the original asteroid belt may have contained mass equivalent to the Earth. Primarily because of gravitational perturbations, most of the material was ejected from the belt within about a million years of formation, leaving behind less than 0.1% of the original mass.[26] Since their formation, the size distribution of the asteroid belt has remained relatively stable: there has been no significant increase or decrease in the typical dimensions of the main-belt asteroids.[34]

The 4:1 orbital resonance with Jupiter, at a radius 2.06 AU, can be considered the inner boundary of the asteroid belt. Perturbations by Jupiter send bodies straying there into unstable orbits. Most bodies formed inside the radius of this gap were swept up by Mars (which has an aphelion at 1.67 AU) or ejected by its gravitational perturbations in the early history of the Solar System.[35] The Hungaria asteroids lie closer to the Sun than the 4:1 resonance, but are protected from disruption by their high inclination.[36]

When the asteroid belt was first formed, the temperatures at a distance of 2.7 AU from the Sun formed a "snow line" below the freezing point of water. Planetesimals formed beyond this radius were able to accumulate ice.[37][38] In 2006 it was announced that a population of comets had been discovered within the asteroid belt beyond the snow line, which may have provided a source of water for Earth's oceans. According to some models, there was insufficient outgassing of water during the Earth's formative period to form the oceans, requiring an external source such as a cometary bombardment.[39]


Template:Multiple image Contrary to popular imagery, the asteroid belt is mostly empty. The asteroids are spread over such a large volume that it would be improbable to reach an asteroid without aiming carefully. Nonetheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more, depending on the lower size cutoff. Over 200 asteroids are known to be larger than 100 km,[40] while a survey in the infrared wavelengths shows that the asteroid belt has 700,000 to 1.7 million asteroids with a diameter of 1 km or more.[41] The apparent magnitudes of most of the known asteroids are 11–19, with the median at about 16.[42]

The total mass of the asteroid belt is estimated to be 2.8×1021 to 3.2×1021 kilograms, which is just 4% of the mass of the Moon.[2] The four largest objects, Ceres, 4 Vesta, 2 Pallas, and 10 Hygiea, account for half of the belt's total mass, with almost one-third accounted for by Ceres alone.[3][4]


The current belt consists primarily of three categories of asteroids: C-type or carbonaceous asteroids, S-type or silicate asteroids, and M-type or metallic asteroids.

Carbonaceous asteroids, as their name suggests, are carbon-rich and dominate the belt's outer regions.[43] Together they comprise over 75% of the visible asteroids. They are more red in hue than the other asteroids and have a very low albedo. Their surface composition is similar to carbonaceous chondrite meteorites. Chemically, their spectra match the primordial composition of the early Solar System, with only the lighter elements and volatiles removed.

S-type (silicate-rich) asteroids are more common toward the inner region of the belt, within 2.5 AU of the Sun.[43][44] The spectra of their surfaces reveal the presence of silicates and some metal, but no significant carbonaceous compounds. This indicates that their materials have been significantly modified from their primordial composition, probably through melting and reformation. They have a relatively high albedo, and form about 17% of the total asteroid population.

M-type (metal-rich) asteroids form about 10% of the total population; their spectra resemble that of iron-nickel. Some are believed to have formed from the metallic cores of differentiated progenitor bodies that were disrupted through collision. However, there are also some silicate compounds that can produce a similar appearance. For example, the large M-type asteroid 22 Kalliope does not appear to be primarily composed of metal.[45] Within the asteroid belt, the number distribution of M-type asteroids peaks at a semi-major axis of about 2.7 AU.[46] It is not yet clear whether all M-types are compositionally similar, or whether it is a label for several varieties which do not fit neatly into the main C and S classes.[47]

One mystery of the asteroid belt is the relative rarity of V-type, or basaltic asteroids.[48] Theories of asteroid formation predict that objects the size of Vesta or larger should form crusts and mantles, which would be composed mainly of basaltic rock, resulting in more than half of all asteroids being composed either of basalt or olivine. Observations, however, suggest that 99 percent of the predicted basaltic material is missing.[49] Until 2001, most basaltic bodies discovered in the asteroid belt were believed to originate from the asteroid Vesta (hence their name V-type). However, the discovery of the asteroid 1459 Magnya revealed a slightly different chemical composition from the other basaltic asteroids discovered until then, suggesting a different origin.[49] This hypothesis was reinforced by the further discovery in 2007 of two asteroids in the outer belt, 7472 Kumakiri and (10537) 1991 RY16, with differing basaltic composition that could not have originated from Vesta. These latter two are the only V-type asteroids discovered in the outer belt to date.[48]

The temperature of the asteroid belt varies with the distance from the Sun. For dust particles within the belt, typical temperatures range from 200 K (−73 °C) at 2.2 AU down to 165 K (−108 °C) at 3.2 AU[50] However, due to rotation, the surface temperature of an asteroid can vary considerably as the sides are alternately exposed to solar radiation and then to the stellar background.

Main-belt comets

Main article: Main-belt comet

Several otherwise unremarkable bodies in the outer belt show cometary activity. Since their orbits cannot be explained through capture of classical comets, it is thought that many of the outer asteroids may be icy, with the ice occasionally exposed to sublimation through small impacts. Main-belt comets may have been a major source of the Earth's oceans, since the deuterium-hydrogen ratio is too low for classical comets to have been the principal source.[51]


The asteroid belt (showing eccentricities), with the asteroid belt in red and blue ("core" region in red)

Most asteroids within the asteroid belt have orbital eccentricities of less than 0.4, and an inclination of less than 30°. The orbital distribution of the asteroids reaches a maximum at an eccentricity of around 0.07 and an inclination below 4°.[42] Thus while a typical asteroid has a relatively circular orbit and lies near the plane of the ecliptic, some asteroid orbits can be highly eccentric or travel well outside the ecliptic plane.

Sometimes, the term main belt is used to refer only to the more compact "core" region where the greatest concentration of bodies is found. This lies between the strong 4:1 and 2:1 Kirkwood gaps at 2.06 and 3.27 AU, and at orbital eccentricities less than roughly 0.33, along with orbital inclinations below about 20°. This "core" region contains approximately 93.4% of all numbered minor planets within the Solar System.[52]

Kirkwood gaps

Main article: Kirkwood gap

This chart shows the distribution of asteroid semi-major axes in the "core" of the asteroid belt. Black arrows point to the Kirkwood gaps, where orbital resonances with Jupiter destabilize orbits.

The semi-major axis of an asteroid is used to describe the dimensions of its orbit around the Sun, and its value determines the minor planet's orbital period. In 1866, Daniel Kirkwood announced the discovery of gaps in the distances of these bodies' orbits from the Sun. They were located at positions where their period of revolution about the Sun was an integer fraction of Jupiter's orbital period. Kirkwood proposed that the gravitational perturbations of the planet led to the removal of asteroids from these orbits.[53]

When the mean orbital period of an asteroid is an integer fraction of the orbital period of Jupiter, a mean-motion resonance with the gas giant is created that is sufficient to perturb an asteroid to new orbital elements. Asteroids that become located in the gap orbits (either primordially because of the migration of Jupiter's orbit,[54] or due to prior perturbations or collisions) are gradually nudged into different, random orbits with a larger or smaller semi-major axis.

The gaps are not seen in a simple snapshot of the locations of the asteroids at any one time because asteroid orbits are elliptical, and many asteroids still cross through the radii corresponding to the gaps. The actual spatial density of asteroids in these gaps does not differ significantly from the neighboring regions.[55]

The main gaps occur at the 3:1, 5:2, 7:3, and 2:1 mean-motion resonances with Jupiter. An asteroid in the 3:1 Kirkwood gap would orbit the Sun three times for each Jovian orbit, for instance. Weaker resonances occur at other semi-major axis values, with fewer asteroids found than nearby. (For example, an 8:3 resonance for asteroids with a semi-major axis of 2.71 AU.)[56]

The main or core population of the asteroid belt is sometimes divided into three zones, based on the most prominent Kirkwood gaps. Zone I lies between the 4:1 resonance (2.06 AU) and 3:1 resonance (2.5 AU) Kirkwood gaps. Zone II continues from the end of Zone I out to the 5:2 resonance gap (2.82 AU). Zone III extends from the outer edge of Zone II to the 2:1 resonance gap (3.28 AU).[57]

The asteroid belt may also be divided into the inner and outer belts, with the inner belt formed by asteroids orbiting nearer to Mars than the 3:1 Kirkwood gap (2.5 AU), and the outer belt formed by those asteroids closer to Jupiter's orbit. (Some authors subdivide the inner and outer belts at the 2:1 resonance gap (3.3 AU), while others suggest inner, middle, and outer belts.)


The zodiacal light, created in part by dust from collisions in the asteroid belt

The high population of the asteroid belt makes for a very active environment, where collisions between asteroids occur frequently (on astronomical time scales). Collisions between main-belt bodies with a mean radius of 10 km are expected to occur about once every 10 million years.[58] A collision may fragment an asteroid into numerous smaller pieces (leading to the formation of a new asteroid family). Conversely, collisions that occur at low relative speeds may also join two asteroids. After more than 4 billion years of such processes, the members of the asteroid belt now bear little resemblance to the original population.

Along with the asteroid bodies, the asteroid belt also contains bands of dust with particle radii of up to a few hundred micrometres. This fine material is produced, at least in part, from collisions between asteroids, and by the impact of micrometeorites upon the asteroids. Due to the Poynting-Robertson effect, the pressure of solar radiation causes this dust to slowly spiral inward toward the Sun.[59]

The combination of this fine asteroid dust, as well as ejected cometary material, produces the zodiacal light. This faint auroral glow can be viewed at night extending from the direction of the Sun along the plane of the ecliptic. Particles that produce the visible zodiacal light average about 40 μm in radius. The typical lifetimes of such particles are about 700,000 years. Thus, to maintain the bands of dust, new particles must be steadily produced within the asteroid belt.[59]


Some of the debris from collisions can form meteoroids that enter the Earth's atmosphere.[60] Of the 50,000 meteorites found on Earth to date, 99.8 percent are believed to have originated in the asteroid belt.[61] A September 2007 study has suggested that a large-body collision undergone by the asteroid 298 Baptistina sent a number of fragments into the inner Solar System. The impacts of these fragments are believed to have created both Tycho crater on the Moon and Chicxulub crater in Mexico, the relict of the massive impact which is believed to have triggered the extinction of the dinosaurs 65 million years ago.[62]

Families and groups

Main article: Asteroid family

This plot of orbital inclination (ip) versus eccentricity (ep) for the numbered main-belt asteroids clearly shows clumpings representing asteroid families.

In 1918, the Japanese astronomer Kiyotsugu Hirayama noticed that the orbits of some of the asteroids had similar parameters, forming families or groups.[63]

Approximately one-third of the asteroids in the asteroid belt are members of an asteroid family. These share similar orbital elements, such as semi-major axis, eccentricity, and orbital inclination as well as similar spectral features, all of which indicate a common origin in the breakup of a larger body. Graphical displays of these elements, for members of the asteroid belt, show concentrations indicating the presence of an asteroid family. There are about 20–30 associations that are almost certainly asteroid families. Additional groupings have been found that are less certain. Asteroid families can be confirmed when the members display common spectral features.[64] Smaller associations of asteroids are called groups or clusters.

Some of the most prominent families in the asteroid belt (in order of increasing semi-major axes) are the Flora, Eunoma, Koronis, Eos, and Themis families.[46] The Flora family, one of the largest with more than 800 known members, may have formed from a collision less than a billion years ago.[65] The largest asteroid to be a true member of a family (as opposed to an interloper in the case of Ceres with the Gefion family) is 4 Vesta. The Vesta family is believed to have formed as the result of a crater-forming impact on Vesta. Likewise, the HED meteorites may also have originated from Vesta as a result of this collision.[66]

Three prominent bands of dust have been found within the asteroid belt. These have similar orbital inclinations as the Eos, Koronis, and Themis asteroid families, and so are possibly associated with those groupings.[67]


Skirting the inner edge of the belt (ranging between 1.78 and 2.0 AU, with a mean semi-major axis of 1.9 AU) is the Hungaria family of minor planets. They are named after the main member, 434 Hungaria; the group contains at least 52 named asteroids. The Hungaria group is separated from the main body by the 4:1 Kirkwood gap and their orbits have a high inclination. Some members belong to the Mars-crossing category of asteroids, and gravitational perturbations by Mars are likely a factor in reducing the total population of this group.[68]

Another high-inclination group in the inner part of the asteroid belt is the Phocaea family. These are composed primarily of S-type asteroids, whereas the neighboring Hungaria family includes some E-types.[69] The Phocaea family orbit between 2.25 and 2.5 AU from the Sun.

Skirting the outer edge of the asteroid belt is the Cybele group, orbiting between 3.3 and 3.5 AU. These have a 7:4 orbital resonance with Jupiter. The Hilda family orbit between 3.5 and 4.2 AU, and have relatively circular orbits and a stable 3:2 orbital resonance with Jupiter. There are few asteroids beyond 4.2 AU, until Jupiter's orbit. Here the two families of Trojan asteroids can be found, which, at least for objects larger than 1 km, are approximately as numerous as the asteroids of the asteroid belt.[70]

New families

Some asteroid families have formed recently, in astronomical terms. The Karin Cluster apparently formed about 5.7 million years ago from a collision with a 33 km radius progenitor asteroid.[71] The Veritas family formed about 8.3 million years ago; evidence includes interplanetary dust recovered from ocean sediment.[72]

More recently, the Datura cluster appears to have formed about 450 thousand years ago from a collision with a main-belt asteroid. The age estimate is based on the probability of the members having their current orbits, rather than from any physical evidence. However, this cluster may have been a source for some zodiacal dust material.[73] Other recent cluster formations, such as the Iannini cluster (circa 1–5 million years ago), may have provided additional sources of this asteroid dust.[74]


Artist's concept of the Dawn spacecraft with Vesta (left) and Ceres (right)

The first spacecraft to traverse the asteroid belt was Pioneer 10, which entered the region on July 16, 1972. At the time there was some concern that the debris in the belt would pose a hazard to the spacecraft, but it has since been safely traversed by 11 Earth-based craft without incident. Pioneer 11, Voyagers 1 and 2 and Ulysses passed through the belt without imaging any asteroids. Galileo imaged the asteroid 951 Gaspra in 1991 and 243 Ida in 1993, NEAR imaged 253 Mathilde in 1997, Cassini imaged 2685 Masursky in 2000, Stardust imaged 5535 Annefrank in 2002, New Horizons imaged 132524 APL in 2006, Rosetta imaged 2867 Šteins in 2008, and Dawn orbited Vesta between July 2011 and September 2012.[75] Due to the low density of materials within the belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.[76]

Most belt asteroids imaged to date have come from brief flyby opportunities by probes headed for other targets. Only the Dawn, NEAR and Hayabusa missions have studied asteroids for a protracted period in orbit and at the surface. Dawn explored Vesta from July 2011 to September 2012, and is currently en route to Ceres for a 2015 rendezvous. If the probe is still operational after examining Ceres, an extended mission could allow additional exploration, possibly a flyby of Pallas.[77]

See also


  1. 1.0 1.1 Krasinsky, G. A., Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, and E. I. (July 2002). "Hidden Mass in the Asteroid Belt". Icarus 158 (1): 98–105. DOI:10.1006/icar.2002.6837.
  2. 2.0 2.1 Pitjeva, E. V. (2005). "High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants" (PDF). Solar System Research 39 (3). DOI:10.1007/s11208-005-0033-2.
  3. 3.0 3.1 For recent estimates of the masses of Ceres, 4 Vesta, 2 Pallas and 10 Hygiea, see the references in the infoboxes of their respective articles.
  4. 4.0 4.1 Yeomans, Donald K. (July 13, 2006). JPL Small-Body Database Browser. NASA JPL. Archived from the original on 29 September 2010. Retrieved on 2010-09-27.
  5. 5.0 5.1 5.2 Hilton, J. (2001). When Did the Asteroids Become Minor Planets?. US Naval Observatory (USNO). Retrieved on 2007-10-01.
  6. 6.0 6.1 Dawn: A Journey to the Beginning of the Solar System. Space Physics Center: UCLA (2005). Archived from the original on 2012-05-24. Retrieved on 2007-11-03.
  7. 7.0 7.1 Hoskin, Michael. Bode's Law and the Discovery of Ceres. Churchill College, Cambridge. Retrieved on 2010-07-12.
  8. Linda T. Elkins-Tanton, Asteroids, Meteorites, and Comets, 2010:10
  9. 9.0 9.1 "Call the police! The story behind the discovery of the asteroids". Astronomy Now (June 2007): 60–61.
  10. Pogge, Richard (2006). An Introduction to Solar System Astronomy: Lecture 45: Is Pluto a Planet?. An Introduction to Solar System Astronomy. Ohio State University. Retrieved on 2007-11-11.
  11. Harper, Douglas (2010). Asteroid. Online Etymology Dictionary. Etymology Online. Retrieved on 2011-04-15.
  12. DeForest, Jessica (2000). Greek and Latin Roots. Michigan State University. Archived from the original on 12 August 2007. Retrieved on 2007-07-25.
  13. Cunningham, Clifford (1984). "William Hershel and the First Two Asteroids". The Minor Planet Bulletin 11: 3.
  14. 14.0 14.1 Staff (2002). Astronomical Serendipity. NASA JPL. Retrieved on 2007-04-20.
  15. Is it a coincidence that most of the planets fall within the Titius-Bode law's boundaries?. Retrieved on 2007-10-16.
  16. von Humboldt, Alexander (1850). Cosmos: A Sketch of a Physical Description of the Universe. Harper & Brothers, New York (NY).
  17. Mann, Robert James (1852). A Guide to the Knowledge of the Heavens. Jarrold. and 1853, p. 216
  18. (January–April 1857)"Further Investigation relative to the form, the magnitude, the mass, and the orbit of the Asteroid Planets". The Edinburgh New Philosophical Journal 5.: "[Professor Peirce] then observed that the analogy between the ring of Saturn and the belt of the asteroids was worthy of notice."
  19. Hughes, David W. (2007). A Brief History of Asteroid Spotting. BBC. Retrieved on 2007-04-20.
  20. Moore, Patrick; Rees, Robin (2011). Patrick Moore's Data Book of Astronomy, 2nd, Cambridge University Press.
  21. Template:Cite video
  22. MPC Archive Statistics. IAU Minor Planet Center. Retrieved on 2011-04-04.
  23. A Brief History of Asteroid Spotting. Retrieved on 2007-05-15.
  24. Masetti, M.; and Mukai, K. (December 1, 2005). Origin of the Asteroid Belt. NASA Goddard Spaceflight Center. Retrieved on 2007-04-25.
  25. Watanabe, Susan (July 20, 2001). Mysteries of the Solar Nebula. NASA. Retrieved on 2007-04-02.
  26. 26.0 26.1 Petit, J.-M.; Morbidelli, A.; and Chambers, J. (2001). "The Primordial Excitation and Clearing of the Asteroid Belt" (PDF). Icarus 153 (2): 338–347. DOI:10.1006/icar.2001.6702. Retrieved on 2007-03-22.
  27. Edgar, R.; and Artymowicz, P. (2004). "Pumping of a Planetesimal Disc by a Rapidly Migrating Planet" (PDF). Monthly Notices of the Royal Astronomical Society 354 (3): 769–772. DOI:10.1111/j.1365-2966.2004.08238.x. Retrieved on 2007-04-16.
  28. Scott, E. R. D. (March 13–17, 2006). "Constraints on Jupiter's Age and Formation Mechanism and the Nebula Lifetime from Chondrites and Asteroids". Proceedings 37th Annual Lunar and Planetary Science Conference, League City, Texas: Lunar and Planetary Society. Retrieved on 2007-04-16.
  29. Taylor, G. J.; Keil, K.; McCoy, T.; Haack, H.; and Scott, E. R. D. (1993). "Asteroid differentiation – Pyroclastic volcanism to magma oceans". Meteoritics 28 (1): 34–52.
  30. Kelly, Karen (2007). U of T researchers discover clues to early solar system. University of Toronto. Retrieved on 2010-07-12.
  31. Clark, B. E.; Hapke, B.; Pieters, C.; Britt, D. (2002). "Asteroid Space Weathering and Regolith Evolution". Asteroids III: 585. Gaffey, Michael J. (1996). "The Spectral and Physical Properties of Metal in Meteorite Assemblages: Implications for Asteroid Surface Materials". Icarus (ISSN 0019-1035) 66 (3): 468. DOI:10.1016/0019-1035(86)90086-2. Keil, K. (2000). Thermal alteration of asteroids: evidence from meteorites. Planetary and Space Science. Retrieved on 2007-11-08. Baragiola, R. A.; Duke, C. A.; Loeffler, M.; McFadden, L. A.; and Sheffield, J. (2003). "Impact of ions and micrometeorites on mineral surfaces: Reflectance changes and production of atmospheric species in airless solar system bodies". EGS – AGU – EUG Joint Assembly: 7709.
  32. Chapman, C. R.; Williams, J. G.; Hartmann, W. K. (1978). "The asteroids". Annual review of astronomy and astrophysics 16: 33–75. DOI:10.1146/annurev.aa.16.090178.000341.
  33. Kracher, A. (2005). Asteroid 433 Eros and partially differentiated planetesimals: bulk depletion versus surface depletion of sulfur (PDF). Ames Laboratory. Archived from the original on 28 November 2007. Retrieved on 2007-11-08.
  34. Stiles, Lori, "Asteroids Caused the Early Inner Solar System Cataclysm", University of Arizona News, September 15, 2005. Retrieved on 2007-04-18.
  35. Alfvén, H.; Arrhenius, G. (1976). The Small Bodies. SP-345 Evolution of the Solar System. NASA. Archived from the original on 13 May 2007. Retrieved on 2007-04-12.
  36. Spratt, Christopher E. (April 1990). "The Hungaria group of minor planets". Journal of the Royal Astronomical Society of Canada 84: 123–131.
  37. Lecar, M.; Podolak, M.; Sasselov, D.; Chiang, E. (2006). "Infrared cirrus – New components of the extended infrared emission". The Astrophysical Journal 640 (2): 1115–1118. DOI:10.1086/500287.
  38. Berardelli, Phil, "Main-Belt Comets May Have Been Source Of Earths Water", Space Daily, March 23, 2006. Retrieved on 2007-10-27.
  39. Lakdawalla, Emily (April 28, 2006). Discovery of a Whole New Type of Comet. The Planetary Society. Archived from the original on 1 May 2007. Retrieved on 2007-04-20.
  40. Yeomans, Donald K. (April 26, 2007). JPL Small-Body Database Search Engine. NASA JPL. Retrieved on 2007-04-26. – search for asteroids in the main belt regions with a diameter >100.
  41. Tedesco, E. F.; and Desert, F.-X. (2002). "The Infrared Space Observatory Deep Asteroid Search". The Astronomical Journal 123 (4): 2070–2082. DOI:10.1086/339482.
  42. 42.0 42.1 Williams, Gareth (September 25, 2010). Distribution of the Minor Planets. Minor Planets Center. Retrieved on 2010-10-27.
  43. 43.0 43.1 Wiegert, P.; Balam, D.; Moss, A.; Veillet, C.; Connors, M.; and Shelton, I. (2007). "Evidence for a Color Dependence in the Size Distribution of Main-Belt Asteroids". The Astronomical Journal 133 (4): 1609–1614. DOI:10.1086/512128. Retrieved on 2008-09-06.
  44. Clark, B. E. (1996). "New News and the Competing Views of Asteroid Belt Geology". Lunar and Planetary Science 27: 225–226.
  45. Margot, J. L.; and Brown, M. E. (2003). "A Low-Density M-type Asteroid in the Main Belt". Science 300 (5627): 1939–1942. DOI:10.1126/science.1085844.
  46. 46.0 46.1 Lang, Kenneth R. (2003). Asteroids and meteorites. NASA's Cosmos. Retrieved on 2007-04-02.
  47. Mueller, M.; Harris, A. W.; Delbo, M.; and the MIRSI Team (2005). "21 Lutetia and other M-types: Their sizes, albedos, and thermal properties from new IRTF measurements". Bulletin of the American Astronomical Society 37.
  48. 48.0 48.1 Duffard, R. D.; Roig, F. (July 14–18, 2008). "Two New Basaltic Asteroids in the Main Belt?". Asteroids, Comets, Meteors 2008.
  49. 49.0 49.1 Than, Ker (2007). Strange Asteroids Baffle Scientists. Retrieved on 2007-10-14.
  50. Low, F. J.; et al. (1984). "Infrared cirrus – New components of the extended infrared emission". Astrophysical Journal, Part 2 – Letters to the Editor 278: L19–L22. DOI:10.1086/184213.
  51. Interview with David Jewitt. (2007-01-05). Retrieved on 2011-05-21.
  52. This value was obtained by a simple count up of all bodies in that region using data for 120437 numbered minor planets from the Minor Planet Center orbit database, dated February 8, 2006.
  53. Fernie, J. Donald (1999). "The American Kepler". The Americal Scientist 87 (5). Retrieved on 2007-02-04.
  54. Liou, Jer-Chyi; and Malhotra, Renu (1997). "Depletion of the Outer Asteroid Belt". Science 275 (5298): 375–377. DOI:10.1126/science.275.5298.375. Retrieved on 2007-08-01.
  55. McBride, N.; and Hughes, D. W. (1990). "The spatial density of asteroids and its variation with asteroidal mass". Monthly Notices of the Royal Astronomical Society 244: 513–520.
  56. Ferraz-Mello, S. (June 14–18, 1993). "Kirkwood Gaps and Resonant Groups". proceedings of the 160th International Astronomical Union, 175–188, Belgirate, Italy: Kluwer Academic Publishers. Retrieved on 2007-03-28.
  57. Klacka, Jozef (1992). "Mass distribution in the asteroid belt". Earth, Moon, and Planets 56 (1): 47–52. DOI:10.1007/BF00054599.
  58. Backman, D. E. (March 6, 1998). Fluctuations in the General Zodiacal Cloud Density. Backman Report. NASA Ames Research Center. Retrieved on 2007-04-04.
  59. 59.0 59.1 Reach, William T. (1992). "Zodiacal emission. III – Dust near the asteroid belt". Astrophysical Journal 392 (1): 289–299. DOI:10.1086/171428.
  60. Kingsley, Danny (May 1, 2003). Mysterious meteorite dust mismatch solved. ABC Science. Retrieved on 2007-04-04.
  61. Meteors and Meteorites. NASA. Retrieved on 2012-01-12.
  62. Breakup event in the main asteroid belt likely caused dinosaur extinction 65 million years ago. Southwest Research Institute (2007). Archived from the original on 11 October 2007. Retrieved on 2007-10-14.
  63. Hughes, David W. (2007). Finding Asteroids In Space. BBC. Retrieved on 2007-04-20.
  64. Lemaitre, Anne (August 31 – September 4, 2004). "Asteroid family classification from very large catalogues". Proceedings Dynamics of Populations of Planetary Systems, 135–144, Belgrade, Serbia and Montenegro: Cambridge University Press. Retrieved on 2007-04-15.
  65. Martel, Linda M. V. (March 9, 2004). Tiny Traces of a Big Asteroid Breakup. Planetary Science Research Discoveries. Archived from the original on 1 April 2007. Retrieved on 2007-04-02.
  66. Drake, Michael J. (2001). "The eucrite/Vesta story". Meteoritics & Planetary Science 36 (4): 501–513. DOI:10.1111/j.1945-5100.2001.tb01892.x.
  67. Love, S. G.; and Brownlee, D. E. (1992). "The IRAS dust band contribution to the interplanetary dust complex – Evidence seen at 60 and 100 microns". Astronomical Journal 104 (6): 2236–2242. DOI:10.1086/116399.
  68. Spratt, Christopher E. (1990). "The Hungaria group of minor planets". Journal of the Royal Astronomical Society of Canada 84 (2): 123–131.
  69. Carvano, J. M.; Lazzaro, D.; Mothé-Diniz, T.; Angeli, C. A.; and Florczak, M. (2001). "Spectroscopic Survey of the Hungaria and Phocaea Dynamical Groups". Icarus 149 (1): 173–189. DOI:10.1006/icar.2000.6512.
  70. Dymock, Roger (2010). Asteroids and Dwarf Planets and How to Observe Them. Springer. Retrieved on 2011-04-04.
  71. Nesvorný, David, et al. (August 2006). "Karin cluster formation by asteroid impact". Icarus 183 (2): 296–311. DOI:10.1016/j.icarus.2006.03.008.
  72. McKee, Maggie, "Eon of dust storms traced to asteroid smash", New Scientist Space, January 18, 2006. Retrieved on 2007-04-15.
  73. Nesvorný, D.; Vokrouhlick, D.; and Bottke, W. F. (2006). "The Breakup of a Main-Belt Asteroid 450 Thousand Years Ago". Science 312 (5779). DOI:10.1126/science.1126175. Retrieved on 2007-04-15.
  74. Nesvorný, D.; Bottke, W. F.; Levison, H. F.; and Dones, L. (2003). "Recent Origin of the Solar System Dust Bands". The Astrophysical Journal 591 (1): 486–497. DOI:10.1086/374807. Retrieved on 2007-04-15.
  75. Barucci, M. A.; Fulchignoni, M.; and Rossi, A. (2007). "Rosetta Asteroid Targets: 2867 Steins and 21 Lutetia". Space Science Reviews 128 (1–4): 67–78. DOI:10.1007/s11214-006-9029-6.
  76. Stern, Alan, "New Horizons Crosses The Asteroid Belt", Space Daily, June 2, 2006. Retrieved on 2007-04-14.
  77. Staff (April 10, 2007). Dawn Mission Home Page. NASA JPL. Archived from the original on 11 April 2007. Retrieved on 2007-04-14.

Further reading

  • Elkins-Tanton, Linda T. (2006). Asteroids, Meteorites, and Comets, First, New York: Chelsea House.

External links

Community content is available under CC-BY-SA unless otherwise noted.